
J .  Fluid Mech. (1985), vol. 150, p p .  8S119 

Printed in Great Britain 

89 

Natural convection in porous media 

By V. PRASAD, 
Department of Mechanical Engineering, Columbia University, New York, NY 10027 

F. A. KULACKI AND M. KEYHANI 
Department of Mechanical and Aerospace Engineering, University of Delaware, 

Newark, DE 19716 

(Received 8 March 1984) 

Experimental results on free convection in a vertical annulus filled with a saturated 
porous medium are reported for height-to-gap ratios of 1.46, 1 and 0.545, and radius 
ratio of 5.338. In  these experiments, the inner and outer walls are maintained at  
constant temperatures. The use of several fluid-solid combinations indicates a 
divergence in the Nusselt-number-Rayleigh-number relation, as also reported by 
previous investigators for horizontal layers and vertical cavities. The reason for this 
divergence is the use of the stagnant thermal conductivity of the fluid-filled solid 
matrix. A simple model is presented to obtain an effective thermal conductivity as 
a function of the convective state, and thereby eliminate the aforementioned 
divergence. A reasonable agreement between experimentally and theoretically 
determined Nusselt numbers is then achieved for the present and previous experi- 
mental results. It is thus concluded that a unique relationship exists between the 
Nusselt and Rayleigh numbers unless Darcy’s law is inapplicable. The factors that 
influence the breakdown of Darcian behaviour are characterized and their effects on 
heat-transfer rates are explained. It is observed that, once the relation between the 
Nusselt and Rayleigh numbers branches out from that obtained via the mathematical 
formulation based on Darcy’s law, its slope approaches that for a fluid-filled enclosure 
of the same geometry when the Rayleigh number is large enough. An iterative scheme 
is also presented for estimation of effective thermal conductivity of a saturated porous 
medium by using the existing results for overall heat transfer. 

1. Introduction 
Fundamental investigations of natural convection in saturated porous media 

appear to have started with linearized stability theory applied to an infinite 
horizontal layer heated from below (Horton & Rogers 1945; Lapwood 1948). These 
studies established the criterion for the onset of convection which was experimentally 
verified by various other investigators later on. Soon thereafter, both analytical and 
experimental investigations were conducted to determine convective heat-transfer 
rates through saturated permeable media of various geometric shapes, e.g. rectangular 
cavities and horizontal and vertical annuli. Some of these studies were aimed at 
visualizing the flow field and the temperature distributions as well. Extensive reviews 
of prior work have been.presented by Combarnous & Bories (1975) and Cheng (1978). 
Generally, prior studies have considered constant-temperature boundaries, and only 
recently have studies begun to appear in which constant-flux boundaries were 
considered (e.g. Prasad & Kulacki 1982; Kulkarni 1983; Reda 1983). 

Most analytical and numerical studies of natural convection in porous media are 
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based on the formulation presented by Wooding (1957). For an isotropic, homogeneous 
fluid-saturated porous media obeying Darcy’s law, the equations for conservation of 
mass and momentum under steady-state conditions are 

V * ( p V )  = 0, ( 1 )  

P P 
€2 K 
- ( V V ) V = - v p + p g - - V ,  

where 6 and K are respectively the porosity and permeability of the porous medium, 
p and p are the density and dynamic viscosity of the fluid, and p is the pressure. The 
velocity vector V is given as V = €4, where q is the fluid-particle velocity vector. 

Neglecting the viscous dissipation, the energy equation obtained by Wooding 
(1957) is 

where C is the isobaric specific heat of the fluid and k is the effective thermal 
conductivity of the porous medium. For an  isotropic homogeneous medium this 

(4) 
equation can be written as 

V V T  = aVZT, 

where a is the thermal diffusivity klpC of the fluid-saturated porous medium. 
A vast majority of the analytical and numerical results available are based on the 

solution of ( l ) ,  (2) and (4) with the Boussinesq approximation of linear density 
variation. I n  most of these analyses, the inertia term in (2) has been neglected owing 
to its low order of magnitude. Non-dimensionalization of these equations under the 
above conditions leads to a modified Rayleigh number 

p C ( V V T )  = V . ( k V T ) ,  (3) 

where AT is the temperature difference across the porous layer, D is a characteristic 
length (e.g. gap width), p is the isobaric coefficient of thermal expansion for the fluid, 
k, is the fluid thermal conductivity, Ra, is the fluid Rayleigh number and Da = KID2 
is the Darcy number. Depending on the shape of enclosure, some geometric 
parameters are also obtained, such as the aspect ratio A = LID (height to  gap width) 
in rectangular enclosures, or the radius ratio K = r,,/ri (outerlinner radii) and the 
aspect ratio A for the annular enclosures. The Prandtl number Pr* = Cp/k  of the 
medium does not appear explicitly in the mathematical formulation, once the con- 
vective terms in (2) are dropped. 

Efforts have also been made to include the viscous diffusion term as p’ V2 V in the 
momentum equation as proposed by Brinkman (1949). When p’ = p this term leads 
to the Darcy number, which is usually very small. Results obtained by using the 
Brinkman model such as those by Chan, Ivey & Barry (1970) clearly indicate that 
the contribution of this additional viscous term in the momentum equation is almost 
negligible for any reasonable value of Da. Hence most of the analytical and numerical 
results have been presented only in terms of the Rayleigh number and the geometric 
parameters. These results clearly indicate that the properties of the solid and fluid 
and the structure of the porous medium affect the heat transfer and flow behaviour 
only through the Rayleigh number Ra*. 

Compared with existing analytical work, experimental investigations are very 
limited. Some of the important experimental results are due to Schneider (1963), 
Elder (1967), Katto & Masuoka (1967), Combarnous (1970a, b ) ,  Kaneko, Mohtadi & 
Aziz (1974), Buretta (1972) and Yen (1974) for horizontal layers, to  Bories & 
Combarnous (1973) and Kaneko et al. (1974) for inclined layers, to Schneider (1963), 
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Klarsfeld (1970), Bories & Combarnous (1973) and Seki, Fukusako & Inaba (1978) 
for vertical cavities, and to  Reda (1983), Kulkarni (1983) and Prasad & Kulacki 
(1984b) for vertical annuli. Out of these, most of the experiments have been 
conducted for a porous medium comprising randomly packed glass beads and water 
as the saturating fluid. 

The data obtained by using various combinations of solid particles and fluids 
(Schneider 1963; Combarnous 1970a, b ;  Seki et al. 1978) are quite interesting and 
reveal that  the heat-transfer rate is not only a function of the Rayleigh number but 
also depends on the properties of the medium. This is contrary to  what the 
mathematical formulation indicates. For example, for a vertical rectangular cavity 
of A = 7.5, Schneider (1963) reports a Nusselt number for a glass-water medium to 
be 2.3 times larger than that for a steel-turpentine medium when Rag = 600. (The 
subscript m denotes the use of stagnant thermal conductivity k, for the medium.) 
The results of Combarnous (1970a, b) and Seki et al. (1978) show a similar behaviour. 
A summary of the various experimental and analytical results for a horizontal layer 
heated from below has recently been given by Cheng (1978). His summary plot of 
the average Nusselt number versus the Rayleigh number is an excellent indication 
of large-scale divergence between the heat-transfer results. From this plot one can 
observe that the heat-transfer coefficients reported by Elder (1967) for a glass-water 
medium is up to  five times higher than that for the steel-turpentine medium given 
by Schneider at specific values of Rayleigh number. 

Various theories have been proposed to explain this divergence in the heat-transfer 
results. Schneider (1963) has argued that, as the convective effects increase with an 
increase in Rag, the influence of thermal conductivity k, of the layer decreases while 
that of the thermal conductivity k, of the fluid increases. (Note that all the reported 
experimental results are based on k,.) To show a better agreement in heat-transfer 
results for various media, he presented his experimental results in terms of Rayleigh 
and Nusselt numbers based on the fluid conductivity k,. Though the agreement among 
the results for various media improved a t  high Rayleigh numbers, the heat- 
transfer results diverged a t  low values of Gr*Pr, owing to this scaling, where 
Gr* = p2gpKD AT/,$. Combarnous (1972) has attributed the cause of this divergence 
to the invalid assumption of an infinite heat-transfer coefficient between the fluid and 
solid phases. He has proposed an  analytical model based on two energy equations, 
one for the solid phase and the other for the liquid phase. His model involves two 
more dimensionless parameters other than Rag and A for a horizontal layer. The 
numerical results obtained by Combarnous & Bories (1974) by using this model 
indicate that there were still appreciable differences between the analytical and 
experimental results, as large as up to 42 % . Secondly, to obtain any satisfactory result 
from this model, one needs to know reasonable values for the thermal conductivity 
k,* of the dispersed structure of the solid matrix, the conductivity kp* of the fluid which 
includes the effects of hydrodynamic dispersion, and the volumetric heat-transfer 
coefficient h, between the solid and liquid phases. 

Other investigators believe that this divergence is a result of a Prandtl-number 
effect, other than that included in Rag. Based on the experimental results for a 
vertical cavity, Seki et al. (1978) have concluded that Prg has an exponent of 0.13 
when the Nusselt number is correlated by an equation of the form 

(6) 

where r and s are experimentally determined constants. Seki et al. have used different 
combinations of glass and iron balls and water, alcohol and transformer oil to  produce 

Nu, = constant x Ragr P r z ,  

4 FLM 150 
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the saturated porous medium. Recently, Catton (1984) has also reported a correlation 
of the form of (6) for a horizontal layer. The value of s obtained by him is 0.18 for 
0.5 < Prz < 1 1 .  

Another interesting feature of these experimental results is the change in the slope 
of In N u ,  when plotted versus In R a z  at higher values of the Rayleigh number. The 
Rayleigh number at which the decrease in slope starts appears to depend on the mean 
diameter of the solid particles. Also, the results of Schneider (1963), Combarnous 
(1970a, b ) ,  Buretta & Berman (1976), Seki et al. (1978) and others indicate that, for 
the same solid-fluid combination, the heat-transfer rate is a function of particle size. 
Larger mean particle diameters tend to  produce a lower Nusselt number when k, < k, 
and an earlier transition to  a lower slope on the In N u ,  versus In Raz  curve. 

2. Motivation and objectives of the present study 
As mentioned earlier, analytical and numerical results have been reported for 

various types of enclosures filled with saturated porous media. Out of these a 
substantial amount of work has been done on the rectangular cavity particularly 
when either the vertical or the horizontal walls are maintained at constant temper- 
atures with the other walls insulated. A review of the studies made on the rectangular 
cavity with isothermally heated vertical wall has recently been presented by Prasad 
(1983). The effects of curvature on an isothermally heated vertical enclosure has also 
been recently studied by Hickox & Gartling (1982), Havstad & Burns (1982), Prasad 
(1983) and Prasad & Kulacki (1984a, 6).  I n  all of these studies, a vertical annulus 
with an isothermal inner wall has been considered. The outer wall has been assumed 
as isothermally cooled and the top and bottom walls are insulated. Havstad & Burns 
have also considered the effect of a conducting outer wall. Experimental results have 
also been reported for the annulus heated by uniform heat flux on the inner wall (Reda 
1983; Kulkarni 1983). 

Using finite-element technique and an approximate method, Hickox & Gartling 
have obtained heat-transfer results for tall annuli (A 2 2) and low Rayleigh numbers 
Ra* up to 100. Using three different methods (finite-difference, approximate and 
perturbation), Havstad & Burns have presented results for 1 < K < 10, 
0.5 < A ( K - ~ ) / K  < 20 and 35 < R a * K / ( K - l )  < 150, where K = ro/rI is the radius 
ratio and A = L / D  is the aspect ratio (height to  annular gap width). Prasad & 
Kulacki (1984a, b )  have considered the problem for much wider ranges of radius ratio 
and Rayleigh numbers, i.e. 1 < K < 26 and Ra* up to 10000. Using a finite-difference 
numerical scheme they have studied the curvature effects on temperature and flow 
fields, and the heat-transfer rates for 1 < A < 20 in the first paper ( 1 9 8 4 ~ )  and for 
0.3 < A < 1 in the second paper (19846). 

Recently, the first experimental studies of natural convection in a vertical annulus 
have been reported by Reda (1983) and Prasad & Kulacki (19846). Reda’s work 
involved the use of a constant heat flux on the inner cylinder and an isothermal outer 
cylinder. Owing to the application of his work to the technology of nuclear waste 
disposal, a permeable medium of 320k 75 pm diameter (i.e. 50-mesh) particles and 
an overlying constant-pressure fluid layer were used. The major results were that the 
inner-surface temperature increased with distance from the bottom of the annulus, 
even at relatively low Rayleigh numbers of 10 or less, and that the temperature 
distribution across the gap was progressively below that for conduction as the power 
input to  the inner cylinder was increased. Reda did not present a correlation for 
Nusselt number versus Rayleigh number owing to the small range of Rayleigh 
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numbers considered. Also, he used a relatively large radius ratio, K = 23 with 
A = 4.25, owing to a focus on temperature distributions in his measurements. Prasad 
& Kulacki (1984b) have used glass beads of 3 mm and 6 mm diameter with water 
as the working fluid to conduct their experiments for an isothermally heated annulus 
with A = 1 and K = 5.338. They have reported close agreement between numerically 
and experimentally determined values of Nusselt number for Rag < 4000. Experi- 
mental temperature distributions are also reported to be in reasonably good agreement 
with numerical predictions. 

Based on our review of the current literature, i t  is evident that few reports are 
available on natural convection in vertical annuli filled with saturated porous media, 
and, of these, experimental studies are rare. Also, experimental work that is available, 
regardless of geometry, is generally limited with respect to solid-fluid combinations. 
To our knowledge, only Schneider (1963), Combarnous (1970a, b), Kaneko et al. (1974) 
and Seki et al. (1978) have conducted experiments using various combinations of solid 
particles and fluids. Thirdly, the divergence in the heat-transfer results as discussed 
above has not been properly explained, nor has the breakdown of classical Darcian 
assumptions at high Rayleigh number been characterized and explained as well. 

The objectives of the present experimental study are hence multifold. They are: 
(1)  to obtain the heat-transfer results and the temperature distributions for the 
isothermally heated vertical annuli for various combinations of fluid and solid to 
produce the porous media and compare them with the numerical predictions; (2) to 
characterize the Prandtl-number effect on the natural convection in porous media ; 
(3) to explain the divergence in the heat-transfer results depending on the solid-fluid 
combinations; (4) to characterize the breakdown of Darcy’s behaviour for natural 
convection in the enclosures filled with porous media; ( 5 )  to investigate the 
heat-transfer behaviour of porous media once Darcy’s law has become inapplicable. 

In order to achieve the above objectives, the experiments have been conducted for 
a vertical annulus whose inner and outer walls are isothermal, the top and bottom 
being insulated. Glass and steel beads of various sizes have been used as solids, while 
water, heptane and ethylene glycol have been used as saturating fluids. For the 
present experiments, the radius ratio of the annulus is 5.338, while the aspect ratio 
has been varied to obtain results for A = 1.46, 1 and 0.545. These results are then 
carefully analysed to explain the divergent behaviour of the heat-transfer results. 

3. Experimental apparatus and procedure 
A schematic of the experimental apparatus used for the present experiments is 

given in figure 1.  The inner cylinder is made out of a wood rod, a glass-epoxy cylinder 
and a brass cylinder. To obtain a constant-temperature inner surface, eight thermofoil 
heaters of 31.8 mm width and 160 mm long are wrapped around the glass-epoxy 
cylinder, which is then inserted into a brass cylinder of 57.1 mm outer diameter. A 
wood rod is shrink-fitted into the glass-epoxy cylinder. To monitor the temperature 
a t  various locations on the inner-cylinder surface, 15 thermocouples are embedded 
in the wall by making slots of 2.5 mm depth in the brass cylinder. The slots are then 
covered with copper cement and sanded to have smooth inner surface. This type of 
arrangement is preferred because the thermocouples attached to the wall disturbs the 
flow field and indicates a temperature between that of the wall surface and the 
exposed surface. 

A brass cylinder of 304.8 mm inner diameter and 5.1 mm thick is used as the outer 
cylinder, and is maintained at  a constant temperature by circulating water at a 

4-2 
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To data 

' . ,  - .  

m i n n e r  cylinders &.%-epoxy cylinder 

m o u t e r  c y l i n d e r m  wooden core 
thermocouple - thermofoil heaters 

m t o p  end-plate, test section A threaded rod 

m b o t t o m  0 cooling C O-rings 
B hooks 

end-plate coil (copper) 

FIGURE 1 .  Schematic of experimental apparatus. 

constant temperature through a copper tube wrapped and soldered around it.  
Five thermocouples are embedded into the wall a t  0.25 mm away from the inner 
surface. For the base plate and the top cover, a 31.75mm thick Phenolite 
( k  = 0.293 W m-' "C-l) sheet is used. The top cover plate is provided with two O-rings, 
one each on the outer and inner side walls, and is free to move up and down. This 
facilitates in obtaining data for three different aspect ratios, A = 1.46, 1 and 0.545, 
by changing the height of the medium. Three thermocouples are cemented to its inner 
surface a t  radially equidistant locations, as shown in figure 1. Three copper-constantan 
grounded thermocouple probes (3.2 m m diameter) are used to measure the temperature 
inside the medium. 

To provide and control the power in each heater a power panel with an  independent 
circuit for each heater is used. The thermocouple readings are directly taken in 
degrees Celsius by using a datalogger, which is able to  read temperatures to the first 
decimal place. A constant-temperature circulator is used to  circulate cooling water 
maintained to f 0.1 "C through the copper coil. A detailed account of the experimental 
arrangement is presented by Prasad (1983). 

To obtain a saturated porous medium, the annular gap is filled up to  the required 
height with solid balls and the saturating liquid, pouring them one by one. The balls 
are allowed to settle down in a random manner by stirring them continuously. 
Finally, liquid is added in excess and the top plate is placed and pushed to  the position 
where i t  rested on the balls, allowing the excess liquid to come out. 

The height of the working medium is always kept approximately equal to an integer 
multiple of the heater width. Power is supplied t o  two additional heaters, one at the 
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Aspect 
ratio 

A 

1.46 

1 .oo 

0.545 

TABLE 1 

Liquid 

ethylene 

water 
water 
heptane 
heptane 
ethylene 

ethylene 

water 

water 
water 
heptane 
heptane 
ethylene 

ethylene 

water 

glycol 

glycol 

glycol 

glycol 

glycol 

Solid 

glass 

glass 
glass 
glass 
glass 
glass 

glass 

chrome 
steel 

glass 
glass 
glass 
glass 
glass 

glass 

chrome 
steel 

Percent maximum temperature 
Ball variation on surface 

d (mm) Rag inner outer 

3 12-163 0.14 0.88 

diameter Rayleigh number 

6 160-4578 0.32 5.29 
22.25 1804-1 67 4 19 0.42 2.19 
3 215-1357 1.96 2.07 
6 558-3808 1.51 0.88 
3 27-130 0.20 0.43 

6 26-589 0.39 1.59 

6.35 44-52 1 3.20 2.60 

3 66-1 040 0.70 1.55 
6 103-8430 1.87 3.70 
3 166-1726 1.69 0.43 
6 143!&7832 3.00 1.63 
3 39-192 0.56 0.45 

6 75-69 1 0.53 0.47 

6.35 74-400 0.67 0.50 

Experimental range of aspect ratio, Rayleigh number and solid-fluid combinations 
for radius ratio K = 5.338 for the present experiments 

bottom end and one in parallel with the top cover plate. These heaters help to  
minimize conduction losses. Every 2-3 h, the temperature distribution on the inner 
surface is checked to make sure that it is being maintained at a constant temperature. 
Manual adjustment of power input to  each heater is then done if needed. I n  general, 
10-30 h are required to  reach the desired steady state and make one set of readings. 
The maximum temperature variations on the inner and outer walls of the annulus 
are given in table 1. 

Temperature corrections are applied to the thermocouple readings to  account for 
the distances by which they are away from the inner and outer surfaces. To estimate 
the conduction loss through the top plate, temperatures a t  five locations on the 
upper surface of the plate are recorded with the help of a digital thermometer. 
The conduction loss through the bottom end plate is very small, less than 0.5 yo of the 
power input (Prasad 1983), and is neglected in calculating the net power input. The 
fact that  this loss is negligible, is also evident from the numerical results (Prasad & 
Kulacki 1984a), which indicate the presence of a thick cold layer in the lower region 
of the annulus. 

By using a measured amount (mass) of solid beads to  fill the annulus to  the required 
height, the porosity E of the medium is obtained by calculating the volume of the 
solid beads and the total volume. The permeability of the porous medium is then 
calculated by using the Kozeny-Carman equation (Bear 1972) 

d2 K = -  63 

180 (1 --E)'' (7)  

where d is the average diameter of the solid beads. 
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The stagnant thermal conductivity k, of the porous medium is obtained using the 
correlation of Kunii & Smith (1960). This correlation is based on the theoretical 
equations for predicting the stagnant conductivities in packed beds of unconsolidated 
particles. Yagi, Kunii & Wakao (1961 ) have compared the theoretical predictions for 
k, with the experimental values of radially effective thermal conductivities for 
various porous media, a geometric configuration very close to the present one. The 
agreement has been reported to be reasonably good. Experimental values of k, 
obtained by Katto & Masuoka (1967) for horizontal porous layer also agree well with 
the empirical predictions by using Kunii & Smith’s correlation. Furthermore, the 
agreement between theoretical values of conduction Nusselt number and experimental 
results at very low Rayleigh numbers in the present experiments and those conducted 
by Kulkarni (1983) indicates that  the correlation predicts reasonably good values of 
stagnant thermal conductivity, a t  least for the radial-heat-transfer case. 

The average heat-transfer coefficient on the inner vertical wall is calculated as 

- net power 
h =  (inner-surface area) x (temperature difference) ’ (8) 

The Nusselt number is then obtained as Nu, = hD/k,. 

4. Results 
For K = 5.338 and A = 1.46, 1 and 0.545 experiments were conducted for a wide 

range of Rayleigh number as given in table 1 .  To obtain data for various fluid-solid 
combinations, glass beads of 3, 6 and 22.25 mm diameter, and chrome-steel beads 
of 6.35 mm diameter were used with water, heptane and ethylene glycol. This covered 
a range of effective Prandtl number Prz  from 0.5 to 100. 

To make direct comparison between the present experimental results and the 
theoretical predictions, numerical computations were carried out for the present 
values of K and A by employing a finite-difference method used by Prasad & Kulacki 
(1982, 1983, 1984a, b ) .  The method and its computational aspects have already been 
presented elsewhere (Prasad & Kulacki 1982, 1 9 8 4 ~ )  and will not be discussed here. 
It may be noted that these numerical solutions are based on Wooding’s formulation 
of the problem and use (1)-(3), without the inertia term in (2). While presenting the 
experimental results, numerical predictions have also been plotted wherever possible. 
For experimental results, the Rayleigh and Nusselt numbers are either based on the 
stagnant thermal conductivity k ,  or the effective thermal conductivity k ,  (to be 
discussed later). For comparison and analysis of data for various porous media, the 
experimental results for water-glass (3 and 6 mm diameter beads, A = 1)  have been 
reproduced from Prasad & Kulacki (1984 b ) .  

4.1. Temperature distributions 

Temperature in the r-direction was recorded a t  five different heights z / L  = 0, 0.25, 
0.50, 0.75 and 1 in order to examine the behaviour of heat transfer through the 
annular porous layer. Figures 2 4  present the typical non-dimensional temperatures 
8 a t  three radial locations R = 0.25, 0.50 and 0.75, where 8 = ( T - T o ) / ( q - T o )  and 
R = ( r - r i ) / ( r o - r i ) .  (More temperature distributions are presented by Prasad 1983.) 
In  these figures the experimentally obtained values of 0 are plotted along with the 
theoretical temperature distributions a t  those heights. Figure 2 (a) presents the 
temperature distributions for Raz  = 100 and A = 1.46 for a glycol-glass medium 
with d = 3 mm. The agreement between the numerical predictions and the recorded 
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temperature is excellent. The largest difference between the two is about 8 yo. Similar 
agreement is also observed for Raz  = 1000, except for 2 = z/L < 0.25 (figure 2b). 
Also, measured temperatures in the upper region are higher than the numerical 
values. This difference increases a t  larger Rayleigh numbers. At  RaZ = 5000 the 
measured temperatures are about 30% higher than predicted values at 2 = 0.75 
(figure 2c). The agreement in the lower region of the annulus, 2 < 0.5, is quite 
reasonable. 

In figures 3 (a-c) the temperatures for various porous media are presented for A = 1 .  
The agreement between the numerical and experimental values of 8 for water-glass 
(d  = 3 mm and 6 mm) is quite reasonable as already reported (Prasad BE Kulacki 
19843). The maximum difference between the two values is 16.5% at Raz  = 2000. 
Again, the actual temperatures in the upper region of the porous medium, 2 > 0.5, 
are higher than predicted values for high values of Rayleigh number (figure 3 c ) .  

As can be seen, the temperature at any location in the medium depends on the 
solid-fluid combination. For Raz x 200 temperatures for water-steel a t  2 < 0.75 are 
all lower than that for water-glass, and temperatures for glycol-glass are mostly 
higher than that for the water-glass at the same locations (figure 3a). For 2 > 0.75 
the temperatures for water-steel are not only higher than those for the water-glass, 
but are also higher than the numerical predictions. For lower values of Rayleigh 
number, this difference between the values of 8 for water-steel and other media at 
2 = 1 is much larger (Prasad 1983). As RaZ increases, the temperatures for water-steel 
at 2 = 1 decrease further, and at Raz x 500 they are lower than all the numerical 
and experimental values of 8 except for heptane-glass (figure 3b). 

It is further observed that the temperatures for glycol-glass and heptaneglass are 
mostly higher than that for water-glass when 2 < 0.75 (figures 3a-c). At 2 = 1 the 
behaviour is completely different. There the temperatures for glycol-glass and 
heptaneglass are both lower than those for water-glass. 

Temperatures for A = 0.545 are presented in figures ~ ( u - c ) .  The behaviour of 
recorded temperatures for various porous media is almost the same as discussed 
earlier. Again, in the present case the temperatures for water-steel are lower than 
the numerical predictions for 2 < 0.75, whereas in the upper region they are higher 
than the numerical values. This difference between the experimental and numerical 
values decreases as the Rayleigh number increases (figures 4a, b, also Prasad 1983). 
Furthermore, in the lower region (2 < 0.75), temperatures for glycol-glass are higher 
than those for watepsteel (figure 4b), but the behaviour reverses as 2+1. From 
figure 4(c) it can be observed that for 2 < 0.75 the values of 8 for heptaneglass are 
higher than those for glycol-glass, whereas, at  2 = 1 ,  the reverse is true. 

This behaviour of the temperature distributions can be summarized as follows. 
(a) For glass as the solid medium the temperatures for heptane are in general higher 

than that for the glycol, which in turn are higher than that for water, when 2 < 0.75. 
Since the thermal conductivity for the heptane is lowest and that for the glycol lies 
between the heptane and the water, the implication is that for a given k,, the 
temperatures for a porous medium with small k, /k ,  are higher than those for a medium 
with larger k,/k,  (2 < 0.75). When 2+ 1 this behaviour is reversed. (The subscripts 
f and s denote fluid and solid respectively.) 

(b) For water as the saturating fluid, the temperatures for the glass are higher than 
those for the steel, when 2 < 0.75. This implies that for a given value of k,, a larger 
kJk ,  produces lower temperatures for 2 less than a certain value, whereas above this 
value the reverse is true. As the fluid velocity increases, the difference in the lower 
region diminishes, and in the upper region the behaviour is just reversed. This is 



98 V .  Prasad, F .  A .  Kulacki and M .  Keyhani 

0 ethylene glycol-glass (d = 3 mm) - - 
Raz = 100 - 

numerical, Ra* = 100 
- 

0 0.25 0.50 0.75 1 .o 
R 

1 .o 
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0.6 

e 
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0.2 

0 0.2 0.4 0.6 0.8 1 .o 
R 

FIUURE 2. For caption see facing page. 

consistent with what has been concluded in (a) for the upper region, but does not 
seem to agree with the temperature behaviour in the lower region. 

To examine further the local behaviour of temperature for various media, the 
temperature distribution with respect to Grashof number Gr* = gPKD AT/v2  may be 
considered. Temperatures for Gr* N 175,467 and 880 are presented in figures 5(a-c) 
for the square annulus. As can be observed, the temperatures for water-steel are in 
general higher than those for water-glass, when 2 < 0.75, for any fixed value of Gr*. 
At 2 = 1 the water-steel temperatures are initially higher (Gr* x 175, figure 5a) ,  but 
start dropping as the strength of convective flow increases. Finally, at Gr* x 567 
(figure 5 b )  they are lower than the local temperatures for water-glass, and continue 
to decrease further as Gr* increases (figure 5 c ) .  The behaviour of the temperature 
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FIGURE 2. Temperature distribution for A = 1.46 and K = 5.338: 
(a) Ra* x 100; ( b )  1OOO; ( c )  5000. 

distributions for heptaneglass with respect to those for water-glass is the same as 
what has been discussed in the earlier paragraphs. 

The overall conclusion is that a lower value of k , /k ,  reduces temperature for any 
point in a lower region of the annulus (2 < 0.75 in the present case). This 'lower 
region' appears to depend on the geometry and Grashof, or Rayleigh, number. As 
2-t 1 this behaviour is reversed, and, finally, temperatures for the lowest value of 
k, /k ,  are largest at Z = 1.  In the case where k, % k, much stronger convective flows 
are required for this behaviour to persist. 

It may be noted that some of the same conclusions and observations on temperature 
distributions can be drawn from the data presented by Seki et al. (1978) for a vertical 
cavity with A = 10. Their temperature profiles clearly indicate that, at the centre 
of the cavity, 0 increases as the Rayleigh number is increased. This increase is a 
maximum for the case of an oil-glass medium in comparison with water-glass and 
ethanol-iron media. Clearly, these temperatures are higher than the theoretical 
predictions. 

Optically measured temperature fields reported by Klarsfeld (1970) for vertical 
cavities also substantiate our observations. Measured temperatures at the cavity 
centre obtained by Klarsfeld are generally larger than the theoretical values. For 
Rak = 324.5 and A = 2.25, T(0.5,0.5) is 19 "C instead of 18.5 "C (theoretical) for a 
temperature difference of 5 O  across the gap. 

4.2. Heat-transfer results 
In this subsection we begin the presentation of heat-transfer results for the vertical 
porous annulus that will proceed from the primary relations between the Nusselt and 
Rayleigh numbers to an extended discussion of the previously described divergent 
characteristics of data that appear in the literature for both vertical cavities and 
horizontal layers. In  a sense, the problem of representing the Nusselt-number- 
Rayleigh-numbers relation universally has been anticipated by the behaviour of the 
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temperature distributions with different fluid-solid media, or equivalently, different 
values of k, /k , .  Generally, the heat-transfer data are presented in this subsection in 
the form Nu, = constant x Ra;' 
for each aspect ratio. 

(9) 
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Temperatures for water-glass are reproduced from Prasad and Kulacki (1984b). 

For A = 1.46 Nusselt numbers for 10 < Raz < 5000 with wateqlass  (d = 6 mm) 
and glycol-glass (d = 3 mm) are presented in figure 6 along with the results obtained 
by a finite-difference analysis (Prasad & Kulacki 1984~) .  In the conduction regime 
the experimental values of Nu,  agree well with numerical results, but in the 
asymptotic flow regime the experimental data fall below the theoretical values. The 
maximum difference is about 25%. With an increase in Rag, this difference 
diminishes, to about 6% for Raz > 450. 

One of the reasons for the experimental values being lower may be the conduction 
losses through the top and bottom plates, and hence the absence of perfectly insulated 
horizontal boundaries. Though these losses have been properly accounted for in 
calculating Nu, from experimental data, the boundary conditions for the top and 
bottom walls for the experiments are not exactly the same as assumed in the numerical 
analysis. As has been reported by Raithby & Wong (1981), for air-filled vertical 
cavities, a linear temperature distribution on the horizontal boundary results in lower 
values of average Nusselt number as compared with a true zero heat flux boundary. 
The difference between the Nusselt numbers for these two boundary conditions 
increases as the aspect ratio is reduced, and is reported to be maximum a t  A = 1 .  
As the Rayleigh number is increased the temperature distribution on the upper 
boundary approaches that for a perfectly insulated surface (see figures 3a-d). Hence 
the relative effects of conduction through the top plate diminish, and a better 
agreement between the experimental and numerical results is obtained. 

In the boundary-layer regime the correlation based on the experimental results is 
obtained as 

whereas the numerical values are correlated by 

The experimental data show a maximum deviation from (10) of 3.3 yo. 

Nu, = 0.627R~:-~l', Rag > 300, A = 1.46, (10) 

Nu = 0.577R~*O.~~l,  Ra* > 200, A = 1.46. ( 1 1 )  
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For A = 1 (figure 7 )  a similar agreement is observed between the numerical and 
experimental values of Nusselt number for water-glass experiments (Prasad t 
Kulacki 19843). Heat-transfer rates obtained for other porous media such as 
heptane-glass, watel-steel and glycol-glass do not show such good agreement with 
the theoretical predictions. When compared with the results of water-glass experi- 
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FIGURE 4. Temperature distribution for A = 0.545 and K = 5.338: (a )  Ra* z 1 0 0 ;  ( b )  200; (c) 500. 

ments i t  is observed that the Nusselt number for all other solid-fluid combinations are 
lower than that for water-glass. This difference between the Nusselt numbers for 
water-glass and any other medium grows as the Rayleigh number increases. For 
example, for Rag x 300, Nu, for heptane-glass is within 2 Yo of that for water-glass, 
whereas at Rag > 3000 the difference between the two values is more than 25 Yo. 
Similarly, at very low Raz,  water-steel results are very close to  water-glass results, 
but, a t  Raz x 520, the difference between the two values are about 35 yo. 

I n  figure 7 the Nusselt numbers for glycol-glass are observed to lie in between the 
water-glass and water-steel or water-glass and heptane-glass results in the 
corresponding ranges of Rayleigh number. This is contrary to what has been reported 
by Seki et al. (1978). Based on their experimental results for vertical cavity, they have 
concluded that Prandtl number of medium, Prg,  has a strong effect on the 
heat-transfer rate. They have obtained an exponent of 0.13 for Prg when they 
correlated their data. I n  the present experiments, Prg for glycol-glass varies between 
100 and 40, whereas for water-glass 3 < Prg < 5. Hence the lower values of Nu, 
for a medium having a large Prandtl number compared with that for water-glass does 
not support the above conclusion of Seki et al. (1978). 

Another interesting aspect of the results is the change in the slope of curve drawn 
through the points for any particular medium, e.g. for heptane-glass or water-steel. 
It can be observed that the rate of increase in Nusselt number decreases with an  
increase in Rayleigh number; that is, the slope of such a curve decreases as Rag 
increases. 

To characterize this behaviour, a set of experiments was conducted with 22.25 mm 
diameter glass balls. The heat-transfer rates for these large glass balls with water are 
always lower than that for small glass beads, for the present range of Rayleigh 
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FIGURE 7. Variation in Nusselt number based on stagnant thermal conductivity, for various 
solid-fluid combinations, and A = 1 .  Water-glass results for 3 and 6 mm beads are taken from 
Prasad & Kulacki (1984b). 

number, R a t  > 2000. The slope of the curve for 22.25 mm diameter glass balls 
diminishes very fast as R a t  increases, and at high Rayleigh numbers the experimental 
values of Nusselt number can be correlated by 

NU, = 0.365Ra~0.277,  R a t  > 3.5 x lo4, A = 1. (12) 

The change in exponent for R a z  from a value close to 0.5 to 0.277 is significant. It 
may be noted that the exponent for Ra,, in the case of liquid-filled cavities and annuli, 
is reported to lie between 0.25 and 0.3 for laminar flow (Thomas & Vahl Davis 1970; 
McGregor & Emery 1969; Prasad & Kulacki 1 9 8 4 ~ ) .  

Heat-transfer results for A = 0.545 and K = 5.338 are presented in figure 8. The 
behaviour of the,Nusselt number with respect to the Rayleigh number and several 
solid-fluid combinations is very similar to what has been observed for the square 
annulus. In  the present case the slope of the curve for any particular medium changes 
much faster with increases in Rayleigh number as compared with that for A = 1 .  Even 
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FIQURE 8. Variation in Nusselt number Nu,,,, for various solid-fluid combinations, A = 0.545. 

for the water-glass medium, the experimental values of Nu, are lower than the 
numerical predictions when Ra: > 2000. The slope of the curve for 6 mm glass beads 
and water is close to 0.4 for Raz > 5000. Furthermore, the heat-transfer rates for 
6 mm beads are lower than that for 3 mm beads, which is clearly indicated by the 
heptane-glass data for the two sizes of beads in the overlapping range of Raz.  This 
is in spite of the fact that Prz  for 3 mm beads is lower than that for 6 mm beads 
in that range of Rayleigh number. In the case of A = 1, no such variation in Nusselt 
numbers for 3 and 6mm beads is observed, though the heat-transfer results for 
22.25 mm glass balls are quite a bit lower. 

It is thus apparent that the Nusselt number is not only a function of solid-fluid 
combinations, but also depends on the diameter of the solid beads. The effect of the 
bead size is mostly reflected in the permeability, but the present results for A = 1 
and 0.545 indicate that the size of the enclosure is also a factor in relation between 
the Nusselt and Rayleigh numbers. This has been demonstrated by the agreement 
of water-glass (d = 6 mm) results with the numerical predictions for A = 1 and 
variation in two results for A = 0.545 for the reported range of Raz.  Also, it should 
be mentioned that the divergence of results for various fluid-solid combinations 
cannot be attributed to the improper selection of values for the stagnant thermal 
conductivity. An inspection of figures 6-8 confirms this point. A t  low Rayleigh 
numbers, close to the conduction regime the overlapping data for various fluid-solid 
combinations are in good agreement. It is only at higher Rayleigh numbers, where 
the convective heat transfer becomes dominant, that the results begin to diverge. 

4.3. Discussion of present results 
The divergence in present heat-transfer results is very similar to that reported by 
various investigators. Though several models have been proposed so far, to explain 
the large-scale divergence in heat-transfer rates, as discussed in 1, none of them 
provide a satisfactory answer to the problem. The non-validity of infinite heat- 
transfer coefficient h between the solid and fluid (Combarnous & Bories 1974) may be 
reasonable, but the theoretical model based on a suitable value of heat-transfer 
coefficient between the solid particles and the fluid is quite complex and is not able 
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to provide satisfactory results to match the experimental values. The effect of Prandtl 
number as reported by Seki et al. (1978) does not seem to be acceptable in the light 
of present results for high Prandtl number. To find an answer to the problem, the 
present experimental results for A = 1 will be looked at in various ways. 

In figure 9 the present heat-transfer results are presented in terms of fluid Rayleigh 
and Nusselt numbers. The implication is that the presence of solid particles is ignored. 
These Nusselt numbers are then compared with Nu, for a water-filled annulus (Prasad 
& Kulacki 1 9 8 4 ~ ) .  As can be seen, the results for 22.25 mm glass balls and water are 
initially lower than that for pure water, but the difference diminishes as the Rayleigh 
number increases. For Ra, > 5 x lo8 the Nusselt numbers are within 5 yo of each other. 
The last five points for glass-water are correlated by 

Nu, = 0.353RaF.261, Ra, > log, ( 1 3 4  

where Ra, = g/3D3AT/vaf, and Nu, = hD/k,.  The exponent of the Rayleigh number 
is quite close to that obtained for fluid-filled vertical cavity and annulus. In  fact, the 
correlation for a water-filled annulus of the same aspect and radius ratios is (Prasad 
& Kulacki 1984c) 

Hence the implication is that a very small fraction of energy is transferred in the 
present case, by conduction through the solid glass beads, which seems to be 
reasonable for a highly permeable porous medium near the wall. This situation can 
also be characterized by saying that the loss in convective heat transfer due to the 
presence of the solid matrix is compensated by the conduction through them. 

Figure 9 also contains the results for 6 mm diameter glass beads with water and 
heptane. As can be seen, not only does the slope of the curve for the water-glass 
(d = 6 mm) medium change very rapidly with increasing Ra,, but the values of Nu, 
for the heptane-glass medium are also very close to that for the water-glass data 
in the overlapping range of Rayleigh number. Furthermore, the heptane-glass data 
follow nearly the same trend with Ra, as the water-glass data. Even though the 
Prandtl number of heptane is comparable to that of water, the conductivity of water 
is about 4.5 times greater than that of heptane. Hence the glass should account for 
a large conduction contribution to the heptane-glass medium. In the overlapping 
range of Rayleigh number this larger conduction contribution of glass beads in the 
case of the heptane-glass medium should therefore result in higher values of Nu, 
compared to those for the water-glass medium, which is not the case. It is thus 
concluded that conduction heat transfer through the solid, as a percentage of overall 
heat transfer, decreases very rapidly as the Rayleigh number increases. This rate of 
decrease depends on the permeability of medium, particularly near the wall. 

To illuminate further the effect of the Prandtl number, consider figure 10, where 
the Nusselt number is plotted against the Grashof number for A = 1. The watepglass 
data (3 < Pr& < 5) are all higher than the heptane-glass points (1.7 < Pr& < 2), 
which in turn are higher than the water-steel points (0.5 < Prz  < 0.9). This clearly 
indicates that, the larger the Prandtl number, the higher is the heat-transfer rate for 
a given Gr*. Even the Nusselt numbers for only water-glass (or heptane-glass) media 
with two different sizes of beads support this conclusion if we ignore the unknown 
effects of the change in porosity and permeability. (The Prandtl number for 6 mm 
diameter beads is lower than that for 3 mm diameter beads for a fixed Gr* owing to 
the difference in mean temperatures of the two media.) The question is whether or 
not this Prandtl-number effect can be expressed by having the same exponents for 
Gr* and P r z ,  such that in (6) s = 0 and only r needs to be considered. 

Nu, = 0.305Ra:.271. (13b)  
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FIGURE 9. Present experimental results for A = 1 ,  in terms of fluid Rayleigh and Nusselt numbers 
and compared with pure-water results, obtained from Prasad & Kulacki (1984~). 

Generally, Prandtl-number effects on free convection in fluid-filled rectangular 
cavities has been found to be quite small when heat-transfer results are presented 

(14) 
in the form 

Nu, = constant x Rafm Pr? Ap, 

and it can be expected that heat transfer in a porous cavity should be similarly 
influenced, at least at high Rayleigh numbers. A recent study by Graebel (1981) on 
the influence of the Prandtl number on free convection in a rectangular cavity 
indicates that the Nusselt number increases by 1.5% when the Prandtl number is 
varied from unity to  infinity for a given Rayleigh number. McGregor & Emery (1969) 
have reported a correlation for the heat transfer in the same geometry and have 
obtained n = 0.012. In  the case of the vertical annulus, Kubair & Simha (1982) have 
obtained a negative value of n = -0.07, which is based on their experimental and 
numerical work for 0.02 < Pr, < 6. A recent study by Keyhani & Kulacki (1984) on 
free convection in a tall vertical annulus with air, helium and water as the working 
fluids supports the above conclusion. On the other hand, the early numerical work 
of Thomas & de Vahl Davis (1970) for a vertical annulus (1 < A < 33) gives a weak 
dependence with n = 0.006, and an experimental study of Prasad & Kulacki (1984~) 
reports n = 0.017 for A = 1 and 4 < Pr < 196. Thus the kind of differences in the 

FIGURE 10. Nusselt number based on stagnant thermal conductivity, Nu,,, for water-glass, 
3 < Prg < 5; heptane-glass, 1.7 < Prg < 2;  and water-steel, 0.5 < Prg < 0.9. 
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Nusselt numbers seen in figures 7 and 8 are most likely a result of the parameters 
chosen, and a physically correct analysis of the experimental data should universally 
represent the effect of the medium on the relation between the Nusselt and Rayleigh 
numbers. 

Another way to look at the present results is to plot the data in terms of parameters 
that do not involve the thermal conductivity of the medium. This has been done in 
figure 11 where Nu,/Pr,  (= hD/pC) is plotted versus Gr*. Here the data for the 
water-steel medium (0.5 < P r z  < 0.9) give the highest values of Nu,/Pr&. However, 
Nu,/Pr& for a heptane-glass medium (1.7 < Pr& < 2) are not higher than those for 
a watepglass (3 < Pr& < 5 ) .  The implication is that the water-glass and heptaneglass 
media must have the same effective Prandtl number. As discussed previously, the 
use of k, in the calculation of the Prandtl number is acceptable for low Rayleigh 
numbers where the convective heat transfer is not dominant (see figure 7). However, 
once convective heat transfer becomes dominant, the effective thermal conductivity 
of the medium becomes a function of the flow parameters as well. Also, the fraction 
of energy transport by the fluid increases as Gr* increases, and the effective thermal 
conductivity of the medium should be expected to change and tend towards the fluid 
conductivity. For the present data the result would be a reduction in the value of 
effective thermal conductivity k,, much more for heptane-glass than for water-glass. 
This would then lead to the enhancement in Nusselt and Prandtl numbers for both 
media, but by different proportions, such that, at high Grashof number (Gr* > 300), 
Nu, and Pr,* are almost the same for both media. In  the case of water-steel the change 
in k, with Gr* would bring the water-steel results closer to those for water-glass. 

As is evident from the above discussion, the effective thermal conductivity k, 
would never change if k, and k, were the same. Consequently, media with such 
fluid-solid combinations yield heat-transfer data generally in close agreement with 
analytical and numerical predictions. The close agreement of the experimental data 
of various investigators obtained for a water-glass medium with analytical and 
numerical predictions confirms this. 

4.4. A model for effective thermal conductivity 
From the preceding, it is now proposed that a simple weighting procedure be adopted 
to account for the flow-dependence of the effective thermal conductivity. At  any 
Rayleigh number, the fraction of heat transferred by convection is given by 

heat transfer by conduction 
w =  1- 

total heat transfer . 

FIQURE 11. Variation in Nu,/Pr& (a parameter independent 
of thermal conductivity) with Grashof number. 
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Here ' convection ' is used to mean that component of heat transfer due to fluid flow 
apart from the conductive amount due to  the mean temperature gradient. For the 
present case of an annulus, 

(16) 

where h applies to the inner wall of the annulus. Generally, (15) may also be written 

km 
ri h In (ro/ri) ' 

w = l -  

as 

The effective thermal conductivity is then given by 

k ,  = wk, + (1 - W )  k,, (18) 

where w depends on geometric parameters and convective state in the porous medium. 

Reformulation of the present data 

The present experimental results for various aspect ratios have been reformulated 
in terms of (16) and (18) and are presented in figures 12-14. I n  figure 12 Nusselt 
numbers Nu, are plotted versus Rayleigh numbers Ra,*, for A = 1 and K = 5.338. 
A marked difference in the behaviour of the data (compare with figure 7) for the 
several fluid-solid combinations is seen. Not only have the experimental data been 
brought together, with the single exception of the Nusselt numbers for the 22.25 mm 
diameter glass balls, but they are in good agreement with the numerical results as 
well. The scatter in the measured Nusselt numbers has been reduced to  f 6 yo, and 
a correlation can be obtained in the form 

' 

Nu, = 0.394Ra,*0.610, Ra,* > 300, A = 1,  (19) 

NU, = 0.485Ra,*0.564, 200 < Ra,* < 5000, A = 1 .  (20) 

whereas the numerical values are correlated by 

For the present set of results (A = l ) ,  the thermal conductivity for water-glass (k,  
versus k,) reduces by a maximum of is%, whereas that for heptaneglass and 
water-steel decreases by about 66 yo at the highest Rapleigh numbers reported here. 
Correspondingly, the Rayleigh and Nusselt numbers also change. The effect on the 
Prandtl number is in the same proportion, and Pr,* for heptaneglass, water-steel and 
glycol-glass approach that for the water-glass, as Ra,* increases. At Ra,* x 4000, the 
Prandtl numbers for heptaneglass and water-glass differ by only 20 yo. 

The above agreement between the numerical and experimental results for various 
porous media is not fortuitous. I n  the energy equation ( 3 ) ,  k is not the stagnant 
thermal conductivity, but the conductivity of the medium when the fluid is flowing. 
Hence the Rayleigh number obtained from the non-dimensionalization of the 
momentum equation is based on the effective thermal conductivity k,, not the 
stagnant conductivity k ,  as is conventionally done. Consequently, the Nusselt 
number that one obtains by solving the system of partial differential equations 
analytically or numerically is also based on k,. This puts a restriction on the use of 
analytical or numerical results for design purposes because the value of k ,  is not 
known beforehand. This difficulty can be easily overcome, and the value of k, for a 
given Rayleigh number Ra: can be obtained from available information. This will 
be discussed further in 54.5. 

While i t  is true that the Nusselt numbers for the 22.25 mm diameter balls diverge 
significantly from the apparent relation between the Nusselt and Rayleigh numbers 
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FIGURE 13. Nusselt number based on effective thermal conductivity Nu,, for A = 0.545. 

in figure 12, we believe this is a result of a failure of Darcy’s law. In  the experiments 
from which these data were taken, the number of balls which could fit across the 
annulus was between five and six. Thus, near both walls of the annulus, permeability 
was quite high and was strongly dependent on location along and normal to  the wall. 
From these data, we propose that, for a given medium, there is a combination of Dld 
and Ba,* for which Darcian behaviour does not exist, and the assumptions used in 
the volume-averaged form of the conservation equations do not hold. We will return 
to this point in $4.6. 

A similar collapse of the experimental data for A = 0.545 and 1.46 around the 
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numerical predictions is seen in figures 13 and 14. In figure 13 the scatter is greatest 
for the water-glass medium (d  = 3 mm). This set of experiments was done under 
various temperature and power conditions to test the repeatability of the experimental 
data (Prasad 1983). However, for both aspect ratios, the agreement between the data 
and the numerical predictions is considered reasonable. 

Reformulation of previous results 
To show further the effectiveness and applicability of the proposed model for the 

effective thermal conductivity, the experimental Tesults of Schneider (1963), 
Combarnous (1970) and Buretta & Berman (1 976) for vertical and horizontal porous 
layers are presented in figures 15-17. Schneider’s results have been modified by 
obtaining the Nusselt and Rayleigh numbers from the graphs given in his paper and 
values of k , /k ,  quoted there. Combarnous’s and Buretta & Bermans’ data have been 
directly taken from the dissertations of Combarnous ( 1 9 7 0 ~ )  and Buretta (1972). 

For Schneider’s results for the vertical rectangular cavity, the Nusselt numbers for 
water-glass and turpentineglass now agree within a reasonable accuracy (figure 15). 
The Nusselt number for turpentineglass is within 4 %  of that for water-glass a t  
Ra,* x 2000, whereas the original difference was 35 % (Schneider 1963). The points 
for turpentine-steel are also very close to the Nue for other media when d = 5 mm. 
For d = 15 mm no such agreement is observed. It may be noted that the width D 
of the layer for Schneider’s experiments was only 40 mm, giving D/d = 2.67. A dip 
in the trend of Nu, versus Ra,* can also be seen for the 10 mm diameter glass beads 
with turpentine as the fluid for Ra,* > 1OOO. The value of D/d  in this case is 4, and 
hence this deviation in the measured Nusselt numbers from the trend established at 
lower Rayleigh numbers takes place at a larger Rae* than for the 15 mm diameter steel 
balls. This behaviour represents a delay in the departure from a Darcian system for 
the given fluid-solid combination, D / d  and Rayleigh number. In  figure 15 the 
agreement between the reformulated experimental results and the numerical predic- 
tions is considered reasonable and is greatly improved over that of the original plot 
in terms of Num and Raz given by Schneider (1963). 

The experimental results of Combarnous (1970a, b )  are presented in figure 16 along 
with the analytical results of Gupta & Joseph (1972). Compared with the original plot 
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FIGURE 15. Schneider’s experimental data (modified) for vertical 
rectangular cavities compared with theoretical results. 
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FIQURE 16. Modified experimental results of Combarnous (1970) for horizontal 
porous layers and analytical results of Gupta & Joseph (1973). 

given by Combarnous, a much closer agreement is seen for all of his data for the 
several fluid-solid combinations considered, except for oil as the fluid. A most 
interesting aspect of the reformulated results is the absence of a definite trend in the 
data for a particular combination of fluid and solid. However, the degree of scatter 
is greatly reduced, with Nusselt numbers falling within a reasonable band about the 
prediction of Gupta & Joseph. With respect to the data for oil as the fluid, Nusselt 
numbers are invariably higher than those for water. A similar observation can also 
be made from the results of Seki et al. (1978) for a vertical porous cavity. The 
behaviour of the data for oil is probably very much affected by a temperature- 
dependent high viscosity, and thus an inappropriate use of Ra,* as a single independent 
parameter for correlation purposes. For temperature-dependent high-viscosity fluid, 
one would need to consider those parameters arising out of additional viscous terms 
as proposed by Brinkman (1949) and others. 

Schneider’s results for the horizontal layer are presented in figure 17 with the 
experimental results of Buretta & Berman (1976) and the analytical results of Gupta 
& Joseph (1973). As in the case of Cornbarnous’s data, a similar improvement is 
obtained when the Nusselt and Rayleigh numbers are reformulated in terms of k,. 
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FIGURE 17. Modified experimental results of Schneider (1963) 
and Buretta t Berman (1976) for horizontal layers. 

(It is interesting to compare figure 17 with figure 37 presented by Cheng (1978) for 
the same data.) As in the previous case, there is a deviation of the data from the trend 
established at low values of Ra,* for the larger-diameter beads, but in figure 17 the 
agreement between the data from both experimental studies, as well as the analytical 
results, is considered quite good for Ra: < 1OOO. A similar improvement in the 
agreement between the water-glass and water-steel data is observed for the recent 
experiments of Catton (1984). 

4.5. Calculation procedure for k ,  

It is possible to obtain the corrected value of k, and then the proper values of the 
Rayleigh and Nusselt numbers by using the heat-transfer results based on the above 
mathematical formulation (I 1).  This, of course, implies a semiempirical and, generally, 
ad hoc procedure, but at this point we can propose no other method owing to the way 
in which the governing differential equations are usually formulated and the absence 
of a precise method for determining the percentages of energy transferred by the solid 
and the fluid as a function of Rayleigh number. Fortunately, a simple procedure, as 
outlined below, can be followed with good results. 

First, one finds the Rayleigh number RaZl) based on the lengthscale appropriate 
to the geometry at  hand. This value of Ra;(l) determines Nu$ from the established 
relation between the Nusselt and Rayleigh numbers. Equations (15)-( 18) are then 
used to obtain w(l) and kt) respectively. Values of Ra,*(') and NuP) can then be 
calculated, and this redefines either the experimental data or numerically predicted 
(Ra:, Nu,)-pair for the given Rayleigh number. With the first iteration, new values 
of w and k, can be calculated to compute improved (Ra:, Nu,)-pairs. When the value 
of the nth iteration for effective thermal conductivity has converged to the desired 
level, the procedure is terminated and the final values of the Rayleigh and Nusselt 
numbers are taken as the corrected data. Either experimental data based on k, or 
theoretically predicted heat-transfer results can be used as the basis for this 
procedure. 

Table 2 presents corrected Rayleigh and Nusselt numbers for A = 1 and K = 5.338 
for several fluid-solid combinations. For all aspect ratios of the present study, the 
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FIGURE 18. Proposed parametrization of heat-transfer data when branch curves appear at high 

Rayleigh numbers. Branch points indicate breakdown of Darcian flow assumption. 

Based on experimental data Based on numerical results 

Medium Raz Nu,  Raz Nu,  RaX Nu,  
wah-glass 262.4 10.43 309.4 12.30 309.5 12.30 

511.9 16.97 615.1 20.40 612.2 20.30 
994.9 22.17 1208.4 30.47 1203.7 30.35 

3582.0 50.10 4370.9 61.13 4363.2 61.03 
heptane-glass 446.0 11.86 983.2 26.14 950.4 25.26 

857.6 17.93 2171.4 45.39 2051.4 42.89 
1327.1 22.82 3532.3 60.75 3348.7 57.59 
3807.9 37.21 11 073.0 108.20 10753.2 105.07 

glycol-glass 278.8 8.90 437.6 13.98 443.8 14.17 
589.0 15.97 1033.6 28.03 1010.5 27.40 

water-chrome 180.4 6.58 378.3 13.80 378.3 13.80 
steel 318.7 8.86 818.1 22.74 787.6 21.89 

521.3 10.94 1526.2 32.03 1472.8 30.91 

ethylene 170.5 6.07 241.1 8.59 255.4 9.10 

TABLE 2. Comparison of modified Rayleigh and Nusselt numbers obtained by using 
experimental data and numerical results, for A = 1, K = 5.338 

agreement between corrected Nusselt numbers based on the experimental data and 
those based on the numerical analysis is quite good. For A = 1 and 0.545 the 
agreement is to within 5-6 %, and this level of uncertainty is well within the range 
of the precision of both the experiments and numerical analysis. 

4.6. Breakdown of Darcian flow 
The foregoing has pointed to several factors which appear to have a substantial 
influence on the Nusselt number but have not been explicitly identified and related 
in previous studies. These are k,lks,  k,, k, and Dld. Additionally, divergence of the 
Nusselt-numbepRayleigh-number curve from trends established at low Rayleigh 
numbers cannot be completely eliminated by the use of the effective thermal 
conductivity k,. Generally, the change in the heat-transfer relation is marked by a 
well-defined change in the slope when In Nu, is plotted versus In Ra,* and apparently 
signals the end of Darcian behaviour for that particular system. After such a change 
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in slope, the Nusselt numbers do not follow predicted values obtailred via numerical 
analysis under the usual volume-averaging rules and assumptions underlying Darcy 's 
law. In this section we propose a way to view the data to account in part for a 
breakdown of Darcian flow. 

From an analysis of our data, and, to some extent, that of others, we propose that 
for any solid-fluid combination the ratio Dld is the parameter that best characterizes 
the change in the slope of the Nusselt-number-Rayleigh-number relation and allows 
one to parametrize a particular branch for a given system (a cavity filled with porous 
media). Further, the tendency of these branch curves must be toward the relation 
between the Nusselt and Rayleigh number for a fluid-filled cavity. Although we 
cannot demonstrate this here with either conclusive experimental data or numerical 
analysis, we offer the following argument. 

First it is necessary to consider figure 17, wherein the Nusselt numbers for the 
15 mm diameter balls diverge sooner (Ra: x 200 at the point of divergence) than 
those for the 14.3 mm diameter glass balls (Ra: x lo00 at the point of divergence). 
The corresponding values of Dld are 2.67 and 6.16 (Schneider 1963; Buretta & 
Berman 1976). Even the data for 10 mm diameter balls diverge earlier than that for 
14.3 mm diameter balls since Dld is lower in the former case (4 versus 6.16). Data 
for the present study for an annulus with A = 1 ,  K = 5.338 (figure 12) shows a branch 
curve for 22.25 mm diameter balls in a watel--glass system that appears to diverge 
somewhere between Rat = 200 and 900. Similar behaviour is demonstrated by the 
results of Schneider and Seki et al. (figure 15) for a vertical cavity. For each of these 
branch curves, the slope starts decreasing as soon as it branches out from the main 
curve (theoretical prediction) and approaches that for the fluid-filled cavity. For the 
present results (figure 12) the slope of the Nusselt-number-Rayleigh-number curve 
is 0.3 when Ra: 3 2.5 x lo4. The slope of Buretta & Bermans' data for the 14.3 mm 
diameter balls (figure 17) is close to 0.35 when Ra: > 5000, whereas Schneider's data 
for the large steel balls (d = 14.3 mm) show a slope close to 0.3. These values are 
reassuring in view of existing literature for a fluid-filled cavity. For such a cavity the 
Nusselt number may be expressed as 

Nu, = c' R a r ,  (21) 

where C' is a constant and the subscript f denotes properties for the fluid alone. For 
the laminar boundary-layer flow in vertical annuli and the rectangular cavities, the 
predicted value of m lies between 0.25 and 0.33 (Sheriff 1966; Thomas & de Vahl 
Davis 1970; Prasad & Kulacki 1984c; McGregor &, Emery 1979; also recall (13b)). 

A t  the point where Darcian behaviour breaks down, the effects of flow channelling 
near the wall may be the most important factor that initiates a fundamental change 
in the Nusselt-number-Rayleigh-number relation (Vafai & Tien 1981). As the 
Rayleigh number is increased for a given fluid-solid combination, the boundary layer 
near the wall reaches a thickness where it is of the order of the ball diameter. This 
implies that the porosity and permeability in the boundary layer are very much higher 
and the volume-averaged conservation equations are no longer valid. Hence the 
quantity 6 / d ,  where 6 is the local boundary-layer thickness, would be the correct 
parameter for the wall-channelling effects. For an enclosure, such as a vertical annulus 
or rectangular cavity, S K D, and the parameter Dld emerges as the parameter that 
designates where certain branches of the Nusselt-number-Rayleigh-number curve 
start. 

If this idea is extended to a consideration of very high Rayleigh number, a given 
Nusselt-number-Rayleigh-number curve should become parallel to that for the 
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fluid-filled cavity of the same dimensions, i.e. regardless of the value of Dld,  the end 
result is an appropriate branch curve. This is not seen when experimental data are 
reported at low Raz  (Reda 1983) or when Dld is extremely large, e.g. when h e  sand 
or ground-glass particles are used as the porous matrix. 

Generally, when a branch is reached in a particular system, the Nusselt-number- 
Rayleigh-number relation can be represented as 

Nu, = C" Ray, (22) 

where m will take on the same values as in (21), and C" depends on the Darcy number 
Da and k , /k ,  since Ra: = Ra, Dak,/k, .  For a given system the Darcy number is a 
constant and k, /k ,  would be close to unity a t  high Ra:. It is speculated that, in the 
case of a shallow cavity, the ratio L l d  of cavity length to particle size may be another 
parameter that influences the breakdown of Darcian flow behaviour, whereas for an 
annulus ri/d may also need to be considered. 

5. Conclusion 
Heat-transfer results obtained from the experiments with a vertical annulus filled 

with various saturated porous media show that there is reasonably good agreement 
with numerically predicted Nusselt numbers for glass-water media when experimental 
Rayleigh and Nusselt numbers are presented in the conventional way, i.e. based on 
the stagnant thermal conductivity k,. The agreement is not very good when either 
the particle diameter relative to the characteristic length of the enclosure is very high 
or the Rayleigh number is too large. Nusselt numbers for all other fluid-solid 
combinations diverge, i.e. exhibit a non-unique relation between the Nusselt and 
Rayleigh numbers. The higher the Rayleigh number or the larger the deviation of 
k f / k s  from unity, the greater is the divergence in the Nusselt number. A similar 
divergence of the heat-transfer data for vertical and horizontal rectangular cavities 
has been reported in the literature by several investigators as well. 

By analysing the present experimental data in various ways, it is shown that this 
divergence is not due to an explicit effect of Prandtl number as suggested by some 
of the previous investigators. Further consideration of the present data has led to 
the conclusion that the major cause of this large-scale divergence is the use of an 
improper thermal conductivity for the porous medium. Based on the fact that the 
fraction of energy transported by the fluid flow increases as the Rayleigh number is 
increased, a simple model for an effective thermal conductivity k, is proposed. The 
model takes into account the enhanced effect of fluid thermal conductivity as a 
function of convective flow. Use of this value of conductivity for the porous medium 
not only eliminates the variation among the Nusselt numbers for various media, but 
also brings them very close to the theoretical predictions over wide ranges of Rayleigh 
numbers and fluid-solid combinations. Similar improvements are observed in the 
experimental results of previous investigators for horizontal layers or vertical 
cavities. 

Although, in the present case or for previous experimental studies, the effective 
thermal conductivity is obtained by using the experimental data directly, an iterative 
scheme is also presented for the estimation of t ,  by using the established theoretical 
relation between Nusselt and Rayleigh numbers. Excellent agreement is achieved 
between the two values of k,. 

From the success of using the effective thermal conductivity, we propose that there 
exists a unique relation between the Nusselt and Rayleigh numbers unless the 
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conditions that assure the validity of Darcy ' s  law are violated. The experimental data 
illustrate this in the branching behaviour that appears at  certain Rayleigh numbers 
for given fluid-solid combinations when the Rayleigh number is large enough. It is 
argued physically that this is a result of flow-channelling effects near solid boundaries 
when the boundary layer reaches the order of the mean particle (or pore) size. For 
the tall cavity, the dimensionless group that parametrizes such branches in the 
Nusselt-number-Rayleigh-number relation is the ratio D/d of cavity width to the 
particle size. The smaller the value of D / d ,  the lower the value of Rae* at which 
branching will occur. From the present experiments and an analysis of previous 
experimental data, it is proposed that the slope for branch relation between Nu, and 
Rae* approaches that for a fluid-filled enclosure of the same geometry when the 
Rayleigh number is large enough. Generally, at very low Rayleigh numbers none of 
these characteristics are encountered because boundary layers are large relative to 
particle (or pore) size, or the entire enclosure is dominated by viscous flow and a low 
component of convective heat transport. 

In  view of the recent emphasis on the use of porous media produced by using solid 
particles for various engineering applications, the characterization of branch points 
and branch relations is of practical value. The conditions under which the slope of 
the branch curve for Nu, versus Ra,* approaches that for the fluid-filled enclosure also 
needs to be understood. It may be interesting to study the effects of a few other 
parameters, e.g. Lld for a shallow rectangular cavity or r i /d  for an annular enclosure, 
on this branching behaviour. Further experiments are required to accomplish this. 
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